Title: | Easy and Accessible Bayesian Measurement Models Using 'brms' |
---|---|
Description: | Fit computational and measurement models using full Bayesian inference. The package provides a simple and accessible interface by translating complex domain-specific models into 'brms' syntax, a powerful and flexible framework for fitting Bayesian regression models using 'Stan'. The package is designed so that users can easily apply state-of-the-art models in various research fields, and so that researchers can use it as a new model development framework. References: Frischkorn and Popov (2023) <doi:10.31234/osf.io/umt57>. |
Authors: | Vencislav Popov [aut, cre, cph] , Gidon T. Frischkorn [aut, cph] , Paul-Christian Bürkner [cph] (Creator of 'brms', code portions of which are used in 'bmm'.) |
Maintainer: | Vencislav Popov <[email protected]> |
License: | GPL-2 |
Version: | 1.0.1.9000 |
Built: | 2025-01-20 20:37:35 UTC |
Source: | https://github.com/venpopov/bmm |
Fit computational and measurement models using full Bayesian inference. The package provides a simple and accessible interface by translating complex domain-specific models into 'brms' syntax, a powerful and flexible framework for fitting Bayesian regression models using 'Stan'. The package is designed so that users can easily apply state-of-the-art models in various research fields, and so that researchers can use it as a new model development framework. References: Frischkorn and Popov (2023) doi:10.31234/osf.io/umt57.
Maintainer: Vencislav Popov [email protected] (ORCID) [copyright holder]
Authors:
Gidon T. Frischkorn [email protected] (ORCID) [copyright holder]
Other contributors:
Paul-Christian Bürkner [email protected] (Creator of 'brms', code portions of which are used in 'bmm'.) [copyright holder]
Useful links:
Report bugs at https://github.com/venpopov/bmm/issues
Fit a Bayesian measurement model using brms as a backend interface to Stan.
bmm( formula, data, model, prior = NULL, sort_data = getOption("bmm.sort_data", "check"), silent = getOption("bmm.silent", 1), backend = getOption("brms.backend", NULL), file = NULL, file_compress = TRUE, file_refit = getOption("bmm.file_refit", FALSE), ... ) fit_model( formula, data, model, prior = NULL, sort_data = getOption("bmm.sort_data", "check"), silent = getOption("bmm.silent", 1), backend = getOption("brms.backend", NULL), ... )
bmm( formula, data, model, prior = NULL, sort_data = getOption("bmm.sort_data", "check"), silent = getOption("bmm.silent", 1), backend = getOption("brms.backend", NULL), file = NULL, file_compress = TRUE, file_refit = getOption("bmm.file_refit", FALSE), ... ) fit_model( formula, data, model, prior = NULL, sort_data = getOption("bmm.sort_data", "check"), silent = getOption("bmm.silent", 1), backend = getOption("brms.backend", NULL), ... )
formula |
An object of class |
data |
An object of class data.frame, containing data of all variables
used in the model. The names of the variables must match the variable names
passed to the |
model |
A description of the model to be fitted. This is a call to a
|
prior |
One or more |
sort_data |
Logical. If TRUE, the data will be sorted by the predictor
variables for faster sampling. If FALSE, the data will not be sorted, but
sampling will be slower. If "check" (the default), |
silent |
Verbosity level between 0 and 2. If 1 (the default), most of the informational messages of compiler and sampler are suppressed. If 2, even more messages are suppressed. The actual sampling progress is still printed. Set refresh = 0 to turn this off as well. If using backend = "rstan" you can also set open_progress = FALSE to prevent opening additional progress bars. |
backend |
Character. The backend to use for fitting the model. Can be
"rstan" or "cmdstanr". If NULL (the default), "cmdstanr" will be used if
the cmdstanr package is installed, otherwise "rstan" will be used. You can
set the default backend using global |
file |
Either |
file_compress |
Logical or a character string, specifying one of the compression algorithms supported by saveRDS when saving the fitted model object. |
file_refit |
Logical or character string. Modifies when the fit stored via the |
... |
Further arguments passed to |
An object of class brmsfit which contains the posterior draws along with many other useful information about the model. Use methods(class = "brmsfit") for an overview on available methods.
The following models are supported:
imm(resp_error, nt_features, nt_distances, set_size, regex, version)
mixture2p(resp_error)
mixture3p(resp_error, nt_features, set_size, regex)
sdm(resp_error, version)
Type ?modelname to get information about a specific model, e.g. ?imm
see this online article for a detailed description of the syntax and how it differs from the syntax for brmsformula
For more information about the default priors in bmm and about who to extract the Stan code and data generated by bmm and #' brms, see the online article.
Type help(package=bmm)
for a full list of available help topics.
fit_model() is a deprecated alias for bmm().
Frischkorn, G. T., & Popov, V. (2023). A tutorial for estimating mixture models for visual working memory tasks in brms: Introducing the Bayesian Measurement Modeling (bmm) package for R. https://doi.org/10.31234/osf.io/umt57
supported_models()
, brms::brm()
, default_prior(), bmmformula()
, stancode(), standata()
# generate artificial data from the Signal Discrimination Model dat <- data.frame(y = rsdm(2000)) # define formula ff <- bmmformula(c ~ 1, kappa ~ 1) # fit the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" )
# generate artificial data from the Signal Discrimination Model dat <- data.frame(y = rsdm(2000)) # define formula ff <- bmmformula(c ~ 1, kappa ~ 1) # fit the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" )
View or change global bmm options
bmm_options( sort_data, parallel, default_priors, silent, color_summary, file_refit, reset_options = FALSE )
bmm_options( sort_data, parallel, default_priors, silent, color_summary, file_refit, reset_options = FALSE )
sort_data |
logical. If TRUE, the data will be sorted by the predictors.
If FALSE, the data will not be sorted, but sampling will be slower. If
"check" (the default), |
parallel |
logical. If TRUE, chains will be run in parallel. If FALSE,
chains will be run sequentially. You can also set these value for each
model separately via the argument |
default_priors |
logical. If TRUE (default), the default bmm priors will
be used. If FALSE, only the basic |
silent |
numeric. Verbosity level between 0 and 2. If 1 ( the default), most of the informational messages of compiler and sampler are suppressed. If 2, even more messages are suppressed. The actual sampling progress is still printed. Default: 1 |
color_summary |
logical. If TRUE, the summary of the model will be printed in color. Default: TRUE |
file_refit |
logical. If TRUE, bmm() will refit the model even if the file argument is specified. Default: FALSE |
reset_options |
logical. If TRUE, the options will be reset to their default values Default: FALSE |
The bmm_options
function is used to view or change the current bmm
options. If no arguments are provided, the function will return the current
options. If arguments are provided, the function will change the options
and return the old options invisibly. If you provide only some of the
arguments, the other options will not be changed. The options are stored in
the global options list and will be used by bmm()
and other
functions in the bmm
package. Each of these options can also be set
manually using the built-in options()
function, by setting the
bmm.sort_data
, bmm.default_priors
, and bmm.silent
options.
A message with the current bmm options and their values, and invisibly returns the old options for use with on.exit() and friends.
# view the current options bmm_options() # change the options to always sort the data and to use parallel sampling bmm_options(sort_data = TRUE, parallel = TRUE) # restore the default options bmm_options(reset_options = TRUE) # you can change the options using the options() function as well options(bmm.sort_data = TRUE, bmm.parallel = TRUE) bmm_options() # reset the options to their default values bmm_options(reset_options = TRUE) # bmm_options(sort_data = TRUE, parallel = TRUE) will also return the old options # so you can use it with on.exit() old_op <- bmm_options(sort_data = TRUE, parallel = TRUE) on.exit(bmm_options(old_op)) bmm_options(reset_options = TRUE)
# view the current options bmm_options() # change the options to always sort the data and to use parallel sampling bmm_options(sort_data = TRUE, parallel = TRUE) # restore the default options bmm_options(reset_options = TRUE) # you can change the options using the options() function as well options(bmm.sort_data = TRUE, bmm.parallel = TRUE) bmm_options() # reset the options to their default values bmm_options(reset_options = TRUE) # bmm_options(sort_data = TRUE, parallel = TRUE) will also return the old options # so you can use it with on.exit() old_op <- bmm_options(sort_data = TRUE, parallel = TRUE) on.exit(bmm_options(old_op)) bmm_options(reset_options = TRUE)
bmmodel
This function is used to specify the formulas predicting the
different parameters of a bmmodel
.
bmmformula(...) bmf(...)
bmmformula(...) bmf(...)
... |
Formulas for predicting a |
A list of formulas for each parameters being predicted
The formula argument accepts formulas of the following syntax:
parameter ~ fixed_effects + (random_effects | grouping_variable)
bmm
formulas are built on brms
formulas and function in nearly the same
way, so you can use most of the brms
formula syntax. The main differences
is that in bmm
formulas, the response variable is not specified in the
formula. Instead, each parameter of the model is explicitly specified as the
left-hand side of the formula. In brms
, the response variable is always
specified as the left-hand side of the first formula, which implicitly means
that any predictors in the first formula are predictors of the mu
parameter
of the model. In general, measurement models do not all have a mu
parameter, therefore it is more straigthforward to explicitely predict each
parameter of the model.
For example, in the following brms
formula for the drift diffusion model,
the first line corresponds to the drift rate parameter, but this is not
explicitely stated.
brmsformula(rt | dec(response) ~ condition + (condition | id), bs ~ 1 + (1 | id), ndt ~ 1 + (1 | id), bias ~ 1 + (1 | id))
In bmm
, the same formula would be written as:
bmmformula(drift ~ condition + (condition | id), bs ~ 1 + (1 | id), ndt ~ 1 + (1 | id), bias ~ 1 + (1 | id))
and the rt and response variables would be specified in the model argument of
the bmm()
function.
Aside from that, the bmm
formula syntax is the same as the brms
formula
syntax. For more information on the brms
formula syntax, see
brms::brmsformula()
.
You can also use the bmf()
function as a shorthand for bmmformula()
.
imm_formula <- bmmformula( c ~ 0 + set_size + (0 + set_size | id), a ~ 1, kappa ~ 0 + set_size + (0 + set_size | id) ) # or use the shorter alias 'bmf' imm_formula2 <- bmf( c ~ 0 + set_size + (0 + set_size | id), a ~ 1, kappa ~ 0 + set_size + (0 + set_size | id) ) identical(imm_formula, imm_formula2)
imm_formula <- bmmformula( c ~ 0 + set_size + (0 + set_size | id), a ~ 1, kappa ~ 0 + set_size + (0 + set_size | id) ) # or use the shorter alias 'bmf' imm_formula2 <- bmf( c ~ 0 + set_size + (0 + set_size | id), a ~ 1, kappa ~ 0 + set_size + (0 + set_size | id) ) identical(imm_formula, imm_formula2)
Convert between parametrizations of the c parameter of the SDM distribution
c_sqrtexp2bessel(c, kappa) c_bessel2sqrtexp(c, kappa)
c_sqrtexp2bessel(c, kappa) c_bessel2sqrtexp(c, kappa)
c |
Vector of memory strength values |
kappa |
Vector of precision values |
c_bessel2sqrtexp
converts the memory strength parameter (c)
from the bessel parametrization to the sqrtexp parametrization,
c_sqrtexp2bessel
converts from the sqrtexp parametrization to the
bessel parametrization.
See the online article for details on the
parameterization. The sqrtexp parametrization is the default in the
bmm
package.
A numeric vector of the same length as c
and kappa
.
c_bessel <- c_sqrtexp2bessel(c = 4, kappa = 3) c_sqrtexp <- c_bessel2sqrtexp(c = c_bessel, kappa = 3)
c_bessel <- c_sqrtexp2bessel(c = 4, kappa = 3) c_sqrtexp <- c_bessel2sqrtexp(c = c_bessel, kappa = 3)
Given a vector of responses, and the values of non-targets, this function computes the error relative to each of the non-targets.
calc_error_relative_to_nontargets(data, response, nt_features)
calc_error_relative_to_nontargets(data, response, nt_features)
data |
A |
response |
Character. The name of the column in |
nt_features |
Character vector. The names of the columns in |
A data.frame
with n*m rows, where n is the number of rows of data
and m is the number of non-target variables. It preserves all other columns
of data
, except for the non-target locations, and adds a column y_nt
,
which contains the transformed response error relative to the non-targets
data <- oberauer_lin_2017 data <- calc_error_relative_to_nontargets(data, "dev_rad", paste0("col_nt", 1:7)) hist(data$y_nt, breaks = 100)
data <- oberauer_lin_2017 data <- calc_error_relative_to_nontargets(data, "dev_rad", paste0("col_nt", 1:7)) hist(data$y_nt, breaks = 100)
The helper functions deg2rad
and rad2deg
should add
convenience in transforming data from degrees to radians and from radians to
degrees.
deg2rad(deg) rad2deg(rad)
deg2rad(deg) rad2deg(rad)
deg |
A numeric vector of values in degrees. |
rad |
A numeric vector of values in radians. |
A numeric vector of the same length as deg
or rad
.
degrees <- runif(100, min = 0, max = 360) radians <- deg2rad(degrees) degrees_again <- rad2deg(radians)
degrees <- runif(100, min = 0, max = 360) radians <- deg2rad(degrees) degrees_again <- rad2deg(radians)
Obtain the default priors for a Bayesian multilevel measurement
model, as well as information for which parameters priors can be specified.
Given the model
, the data
and the formula
for the model, this
function will return the default priors that would be used to estimate the
model. Additionally, it will return all model parameters that have no prior
specified (flat priors). This can help to get an idea about which priors
need to be specified and also know which priors were used if no
user-specified priors were passed to the bmm()
function.
The default priors in bmm
tend to be more informative than the default
priors in brms
, as we use domain knowledge to specify the priors.
## S3 method for class 'bmmformula' default_prior(object, data, model, formula = object, ...)
## S3 method for class 'bmmformula' default_prior(object, data, model, formula = object, ...)
object |
A |
data |
An object of class data.frame, containing data of all variables
used in the model. The names of the variables must match the variable names
passed to the |
model |
A description of the model to be fitted. This is a call to a
|
formula |
An object of class |
... |
Further arguments passed to |
A data.frame with columns specifying the prior
, the class
, the
coef
and group
for each of the priors specified. Separate rows contain
the information on the parameters (or parameter classes) for which priors
can be specified.
supported_models()
, brms::default_prior()
default_prior(bmf(c ~ 1, kappa ~ 1), data = oberauer_lin_2017, model = sdm(resp_error = "dev_rad") )
default_prior(bmf(c ~ 1, kappa ~ 1), data = oberauer_lin_2017, model = sdm(resp_error = "dev_rad") )
Extract information from a brmsfit object
fit_info(fit, what)
fit_info(fit, what)
fit |
A brmsfit object, or a list of brmsfit objects |
what |
String. What to return:
|
Depends on what
and the class of fit
. For brmsfit
objects,
information about the single fit is returned. For brmsfit_list
objects, a
list or data.frame with the information for each fit is returned.
"time": A data.frame with the sampling time per chain
"time_mean": A named numeric vector with the mean sampling time
fit <- bmm( formula = bmmformula(c ~ 1, kappa ~ 1), data = data.frame(y = rsdm(1000)), model = sdm(resp_error = "y") ) fit_info(fit, "time")
fit <- bmm( formula = bmmformula(c ~ 1, kappa ~ 1), data = data.frame(y = rsdm(1000)), model = sdm(resp_error = "y") ) fit_info(fit, "time")
Three versions of the Interference measurement model by Oberauer and Lin (2017). - the full, bsc, and abc.
IMMfull()
, IMMbsc()
, and IMMabc()
are deprecated and will be removed in the future.
Please use imm(version = 'full')
, imm(version = 'bsc')
, or imm(version = 'abc')
instead.
imm( resp_error, nt_features, nt_distances, set_size, regex = FALSE, version = "full", ... ) IMMfull(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...) IMMbsc(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...) IMMabc(resp_error, nt_features, set_size, regex = FALSE, ...)
imm( resp_error, nt_features, nt_distances, set_size, regex = FALSE, version = "full", ... ) IMMfull(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...) IMMbsc(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...) IMMabc(resp_error, nt_features, set_size, regex = FALSE, ...)
resp_error |
The name of the variable in the provided dataset containing
the response error. The response Error should code the response relative to
the to-be-recalled target in radians. You can transform the response error
in degrees to radian using the |
nt_features |
A character vector with the names of the non-target variables. The non_target variables should be in radians and be centered relative to the target. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target feature columns in the dataset. |
nt_distances |
A vector of names of the columns containing the distances
of non-target items to the target item. Alternatively, if regex=TRUE, a regular
expression can be used to match the non-target distances columns in the
dataset. Only necessary for the |
set_size |
Name of the column containing the set size variable (if set_size varies) or a numeric value for the set_size, if the set_size is fixed. |
regex |
Logical. If TRUE, the |
version |
Character. The version of the IMM model to use. Can be one of
|
... |
used internally for testing, ignore it |
Domain: Visual working memory
Task: Continuous reproduction
Name: Interference measurement model by Oberauer and Lin (2017).
Citation:
Oberauer, K., & Lin, H.Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21-59
full
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.
kappa
: Concentration parameter of the von Mises distribution
a
: General activation of memory items
c
: Context activation
s
: Spatial similarity gradient
Fixed parameters:
mu1
= 0
mu2
= 0
kappa2
= -100
Default parameter links:
mu1 = tan_half; kappa = log; a = log; c = log; s = log
Default priors:
mu1
:
main
: student_t(1, 0, 1)
kappa
:
main
: normal(2, 1)
effects
: normal(0, 1)
a
:
main
: normal(0, 1)
effects
: normal(0, 1)
c
:
main
: normal(0, 1)
effects
: normal(0, 1)
s
:
main
: normal(0, 1)
effects
: normal(0, 1)
bsc
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.
kappa
: Concentration parameter of the von Mises distribution
c
: Context activation
s
: Spatial similarity gradient
Fixed parameters:
mu1
= 0
mu2
= 0
kappa2
= -100
Default parameter links:
mu1 = tan_half; kappa = log; c = log; s = log
Default priors:
mu1
:
main
: student_t(1, 0, 1)
kappa
:
main
: normal(2, 1)
effects
: normal(0, 1)
c
:
main
: normal(0, 1)
effects
: normal(0, 1)
s
:
main
: normal(0, 1)
effects
: normal(0, 1)
abc
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.
kappa
: Concentration parameter of the von Mises distribution
a
: General activation of memory items
c
: Context activation
Fixed parameters:
mu1
= 0
mu2
= 0
kappa2
= -100
Default parameter links:
mu1 = tan_half; kappa = log; a = log; c = log
Default priors:
mu1
:
main
: student_t(1, 0, 1)
kappa
:
main
: normal(2, 1)
effects
: normal(0, 1)
a
:
main
: normal(0, 1)
effects
: normal(0, 1)
c
:
main
: normal(0, 1)
effects
: normal(0, 1)
Additionally, all imm models have an internal parameter that is fixed to 0 to allow the model to be identifiable. This parameter is not estimated and is not included in the model formula. The parameter is:
b = "Background activation (internally fixed to 0)"
An object of class bmmodel
# load data data <- oberauer_lin_2017 # define formula ff <- bmmformula( kappa ~ 0 + set_size, c ~ 0 + set_size, a ~ 0 + set_size, s ~ 0 + set_size ) # specify the full IMM model with explicit column names for non-target features and distances # by default this fits the full version of the model model1 <- imm( resp_error = "dev_rad", nt_features = paste0("col_nt", 1:7), nt_distances = paste0("dist_nt", 1:7), set_size = "set_size" ) # fit the model fit <- bmm( formula = ff, data = data, model = model1, cores = 4, backend = "cmdstanr" ) # alternatively specify the IMM model with a regular expression to match non-target features # this is equivalent to the previous call, but more concise model2 <- imm( resp_error = "dev_rad", nt_features = "col_nt", nt_distances = "dist_nt", set_size = "set_size", regex = TRUE ) # fit the model fit <- bmm( formula = ff, data = data, model = model2, cores = 4, backend = "cmdstanr" ) # you can also specify the `bsc` or `abc` versions of the model to fit a reduced version model3 <- imm( resp_error = "dev_rad", nt_features = "col_nt", set_size = "set_size", regex = TRUE, version = "abc" ) fit <- bmm( formula = ff, data = data, model = model3, cores = 4, backend = "cmdstanr" )
# load data data <- oberauer_lin_2017 # define formula ff <- bmmformula( kappa ~ 0 + set_size, c ~ 0 + set_size, a ~ 0 + set_size, s ~ 0 + set_size ) # specify the full IMM model with explicit column names for non-target features and distances # by default this fits the full version of the model model1 <- imm( resp_error = "dev_rad", nt_features = paste0("col_nt", 1:7), nt_distances = paste0("dist_nt", 1:7), set_size = "set_size" ) # fit the model fit <- bmm( formula = ff, data = data, model = model1, cores = 4, backend = "cmdstanr" ) # alternatively specify the IMM model with a regular expression to match non-target features # this is equivalent to the previous call, but more concise model2 <- imm( resp_error = "dev_rad", nt_features = "col_nt", nt_distances = "dist_nt", set_size = "set_size", regex = TRUE ) # fit the model fit <- bmm( formula = ff, data = data, model = model2, cores = 4, backend = "cmdstanr" ) # you can also specify the `bsc` or `abc` versions of the model to fit a reduced version model3 <- imm( resp_error = "dev_rad", nt_features = "col_nt", set_size = "set_size", regex = TRUE, version = "abc" ) fit <- bmm( formula = ff, data = data, model = model3, cores = 4, backend = "cmdstanr" )
Density, distribution, and random generation functions for the
interference measurement model with the location of mu
, strength of cue-
dependent activation c
, strength of cue-independent activation a
, the
generalization gradient s
, and the precision of memory representations
kappa
.
dimm( x, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 5, a = 2, b = 1, s = 2, kappa = 5, log = FALSE ) pimm( q, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 1, a = 0.2, b = 0, s = 2, kappa = 5 ) qimm( p, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 1, a = 0.2, b = 0, s = 2, kappa = 5 ) rimm( n, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 1, a = 0.2, b = 1, s = 2, kappa = 5 )
dimm( x, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 5, a = 2, b = 1, s = 2, kappa = 5, log = FALSE ) pimm( q, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 1, a = 0.2, b = 0, s = 2, kappa = 5 ) qimm( p, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 1, a = 0.2, b = 0, s = 2, kappa = 5 ) rimm( n, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 1, a = 0.2, b = 1, s = 2, kappa = 5 )
x |
Vector of observed responses |
mu |
Vector of locations |
dist |
Vector of distances of the item locations to the cued location |
c |
Vector of strengths for cue-dependent activation |
a |
Vector of strengths for cue-independent activation |
b |
Vector of baseline activation |
s |
Vector of generalization gradients |
kappa |
Vector of precision values |
log |
Logical; if |
q |
Vector of quantiles |
p |
Vector of probability |
n |
Number of observations to generate data for |
dimm
gives the density of the interference measurement model,
pimm
gives the cumulative distribution function of the interference
measurement model, qimm
gives the quantile function of the interference
measurement model, and rimm
gives the random generation function for the
interference measurement model.
Oberauer, K., Stoneking, C., Wabersich, D., & Lin, H.-Y. (2017). Hierarchical Bayesian measurement models for continuous reproduction of visual features from working memory. Journal of Vision, 17(5), 11.
# generate random samples from the imm and overlay the density r <- rimm(10000, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 5, a = 2, s = 2, b = 1, kappa = 4 ) x <- seq(-pi, pi, length.out = 10000) d <- dimm(x, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 5, a = 2, s = 2, b = 1, kappa = 4 ) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
# generate random samples from the imm and overlay the density r <- rimm(10000, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 5, a = 2, s = 2, b = 1, kappa = 4 ) x <- seq(-pi, pi, length.out = 10000) d <- dimm(x, mu = c(0, 2, -1.5), dist = c(0, 0.5, 2), c = 5, a = 2, s = 2, b = 1, kappa = 4 ) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
This function transforms the precision parameter kappa of the von Mises distribution to the circular standard deviation. Adapted from Matlab code by Paul Bays (https://www.paulbays.com/code.php)
k2sd(K)
k2sd(K)
K |
numeric. A vector of kappa values. |
A vector of sd values.
kappas <- runif(1000, 0.01, 100) # calcualte SD (in radians) SDs <- k2sd(kappas) # transform SDs from radians to degrees SDs_degress <- SDs * 180 / pi # plot the relationship between kappa and circular SD plot(kappas, SDs) plot(kappas, SDs_degress)
kappas <- runif(1000, 0.01, 100) # calcualte SD (in radians) SDs <- k2sd(kappas) # transform SDs from radians to degrees SDs_degress <- SDs * 180 / pi # plot the relationship between kappa and circular SD plot(kappas, SDs) plot(kappas, SDs_degress)
Two-parameter mixture model by Zhang and Luck (2008).
mixture2p(resp_error, ...)
mixture2p(resp_error, ...)
resp_error |
The name of the variable in the provided dataset containing
the response error. The response Error should code the response relative to
the to-be-recalled target in radians. You can transform the response error
in degrees to radian using the |
... |
used internally for testing, ignore it |
Domain: Visual working memory
Task: Continuous reproduction
Name: Two-parameter mixture model by Zhang and Luck (2008).
Citation:
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.
kappa
: Concentration parameter of the von Mises distribution
thetat
: Mixture weight for target responses
Fixed parameters:
mu1
= 0
mu2
= 0
kappa2
= -100
Default parameter links:
mu1 = tan_half; kappa = log; thetat = identity
Default priors:
mu1
:
main
: student_t(1, 0, 1)
kappa
:
main
: normal(2, 1)
effects
: normal(0, 1)
thetat
:
main
: logistic(0, 1)
An object of class bmmodel
# generate artificial data dat <- data.frame(y = rmixture2p(n = 2000)) # define formula ff <- bmmformula(kappa ~ 1, thetat ~ 1) model <- mixture2p(resp_error = "y") # fit the model fit <- bmm( formula = ff, data = dat, model = model, cores = 4, iter = 500, backend = "cmdstanr" )
# generate artificial data dat <- data.frame(y = rmixture2p(n = 2000)) # define formula ff <- bmmformula(kappa ~ 1, thetat ~ 1) model <- mixture2p(resp_error = "y") # fit the model fit <- bmm( formula = ff, data = dat, model = model, cores = 4, iter = 500, backend = "cmdstanr" )
Density, distribution, and random generation functions for the
two-parameter mixture model with the location of mu
, precision of memory
representations kappa
and probability of recalling items from memory
p_mem
.
dmixture2p(x, mu = 0, kappa = 5, p_mem = 0.6, log = FALSE) pmixture2p(q, mu = 0, kappa = 7, p_mem = 0.8) qmixture2p(p, mu = 0, kappa = 5, p_mem = 0.6) rmixture2p(n, mu = 0, kappa = 5, p_mem = 0.6)
dmixture2p(x, mu = 0, kappa = 5, p_mem = 0.6, log = FALSE) pmixture2p(q, mu = 0, kappa = 7, p_mem = 0.8) qmixture2p(p, mu = 0, kappa = 5, p_mem = 0.6) rmixture2p(n, mu = 0, kappa = 5, p_mem = 0.6)
x |
Vector of observed responses |
mu |
Vector of locations |
kappa |
Vector of precision values |
p_mem |
Vector of probabilities for memory recall |
log |
Logical; if |
q |
Vector of quantiles |
p |
Vector of probability |
n |
Number of observations to generate data for |
dmixture2p
gives the density of the two-parameter mixture model,
pmixture2p
gives the cumulative distribution function of the
two-parameter mixture model, qmixture2p
gives the quantile function of
the two-parameter mixture model, and rmixture2p
gives the random
generation function for the two-parameter mixture model.
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453.
# generate random samples from the mixture2p model and overlay the density r <- rmixture2p(10000, mu = 0, kappa = 4, p_mem = 0.8) x <- seq(-pi, pi, length.out = 10000) d <- dmixture2p(x, mu = 0, kappa = 4, p_mem = 0.8) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
# generate random samples from the mixture2p model and overlay the density r <- rmixture2p(10000, mu = 0, kappa = 4, p_mem = 0.8) x <- seq(-pi, pi, length.out = 10000) d <- dmixture2p(x, mu = 0, kappa = 4, p_mem = 0.8) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
Three-parameter mixture model by Bays et al (2009).
mixture3p(resp_error, nt_features, set_size, regex = FALSE, ...)
mixture3p(resp_error, nt_features, set_size, regex = FALSE, ...)
resp_error |
The name of the variable in the dataset containing
the response error. The response error should code the response relative to
the to-be-recalled target in radians. You can transform the response error
in degrees to radians using the |
nt_features |
A character vector with the names of the non-target feature values. The non_target feature values should be in radians and centered relative to the target. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target feature columns in the dataset. |
set_size |
Name of the column containing the set size variable (if set_size varies) or a numeric value for the set_size, if the set_size is fixed. |
regex |
Logical. If TRUE, the |
... |
used internally for testing, ignore it |
Domain: Visual working memory
Task: Continuous reproduction
Name: Three-parameter mixture model by Bays et al (2009).
Citation:
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 1-11
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
Parameters:
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.
kappa
: Concentration parameter of the von Mises distribution
thetat
: Mixture weight for target responses
thetant
: Mixture weight for non-target responses
Fixed parameters:
mu1
= 0
mu2
= 0
kappa2
= -100
Default parameter links:
mu1 = tan_half; kappa = log; thetat = identity; thetant = identity
Default priors:
mu1
:
main
: student_t(1, 0, 1)
kappa
:
main
: normal(2, 1)
effects
: normal(0, 1)
thetat
:
main
: logistic(0, 1)
thetant
:
main
: logistic(0, 1)
An object of class bmmodel
# generate artificial data from the Bays et al (2009) 3-parameter mixture model dat <- data.frame( y = rmixture3p(n = 2000, mu = c(0, 1, -1.5, 2)), nt1_loc = 1, nt2_loc = -1.5, nt3_loc = 2 ) # define formula ff <- bmmformula( kappa ~ 1, thetat ~ 1, thetant ~ 1 ) # specify the 3-parameter model with explicit column names for non-target features model1 <- mixture3p(resp_error = "y", nt_features = paste0("nt", 1:3, "_loc"), set_size = 4) # fit the model fit <- bmm( formula = ff, data = dat, model = model1, cores = 4, iter = 500, backend = "cmdstanr" ) # alternatively specify the 3-parameter model with a regular expression to match non-target features # this is equivalent to the previous call, but more concise model2 <- mixture3p(resp_error = "y", nt_features = "nt.*_loc", set_size = 4, regex = TRUE) # fit the model fit <- bmm( formula = ff, data = dat, model = model2, cores = 4, iter = 500, backend = "cmdstanr" )
# generate artificial data from the Bays et al (2009) 3-parameter mixture model dat <- data.frame( y = rmixture3p(n = 2000, mu = c(0, 1, -1.5, 2)), nt1_loc = 1, nt2_loc = -1.5, nt3_loc = 2 ) # define formula ff <- bmmformula( kappa ~ 1, thetat ~ 1, thetant ~ 1 ) # specify the 3-parameter model with explicit column names for non-target features model1 <- mixture3p(resp_error = "y", nt_features = paste0("nt", 1:3, "_loc"), set_size = 4) # fit the model fit <- bmm( formula = ff, data = dat, model = model1, cores = 4, iter = 500, backend = "cmdstanr" ) # alternatively specify the 3-parameter model with a regular expression to match non-target features # this is equivalent to the previous call, but more concise model2 <- mixture3p(resp_error = "y", nt_features = "nt.*_loc", set_size = 4, regex = TRUE) # fit the model fit <- bmm( formula = ff, data = dat, model = model2, cores = 4, iter = 500, backend = "cmdstanr" )
Density, distribution, and random generation functions for the
three-parameter mixture model with the location of mu
, precision of
memory representations kappa
, probability of recalling items from memory
p_mem
, and probability of recalling non-targets p_nt
.
dmixture3p( x, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2, log = FALSE ) pmixture3p(q, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2) qmixture3p(p, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2) rmixture3p(n, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2)
dmixture3p( x, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2, log = FALSE ) pmixture3p(q, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2) qmixture3p(p, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2) rmixture3p(n, mu = c(0, 2, -1.5), kappa = 5, p_mem = 0.6, p_nt = 0.2)
x |
Vector of observed responses |
mu |
Vector of locations. First value represents the location of the target item and any additional values indicate the location of non-target items. |
kappa |
Vector of precision values |
p_mem |
Vector of probabilities for memory recall |
p_nt |
Vector of probabilities for swap errors |
log |
Logical; if |
q |
Vector of quantiles |
p |
Vector of probability |
n |
Number of observations to generate data for |
dmixture3p
gives the density of the three-parameter mixture model,
pmixture3p
gives the cumulative distribution function of the
two-parameter mixture model, qmixture3p
gives the quantile function of
the two-parameter mixture model, and rmixture3p
gives the random
generation function for the two-parameter mixture model.
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7.
# generate random samples from the mixture3p model and overlay the density r <- rmixture3p(10000, mu = c(0, 2, -1.5), kappa = 4, p_mem = 0.6, p_nt = 0.2) x <- seq(-pi, pi, length.out = 10000) d <- dmixture3p(x, mu = c(0, 2, -1.5), kappa = 4, p_mem = 0.6, p_nt = 0.2) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
# generate random samples from the mixture3p model and overlay the density r <- rmixture3p(10000, mu = c(0, 2, -1.5), kappa = 4, p_mem = 0.6, p_nt = 0.2) x <- seq(-pi, pi, length.out = 10000) d <- dmixture3p(x, mu = c(0, 2, -1.5), kappa = 4, p_mem = 0.6, p_nt = 0.2) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
Raw data of 19 subjects that completed a continuous reproduction task with set size 1 to 8 reported by Oberauer & Lin (2017).
oberauer_lin_2017
oberauer_lin_2017
oberauer_lin_2017
A data frame with 15,200 rows and 19 columns:
Integer uniquely identifying different subjects
Session number
Trial number within each session
The set_size of the data in this row
The response error, that is the difference between the response given and the target color in radians.
The non-target items' color value relative to the target.
The spatial distance between all non-target items and the target item in radians.
bmmfit
ObjectsRestructure old bmmfit
objects to work with
the latest bmm version. This function is called
internally when applying post-processing methods.
## S3 method for class 'bmmfit' restructure(x, ...)
## S3 method for class 'bmmfit' restructure(x, ...)
x |
An object of class |
... |
Currently ignored. |
A bmmfit
object compatible with the latest version
of bmm and brms.
# Load an old bmmfit object old_fit <- readRDS("bmmfit_old.rds") new_fit <- restructure(old_fit)
# Load an old bmmfit object old_fit <- readRDS("bmmfit_old.rds") new_fit <- restructure(old_fit)
Signal Discrimination Model (SDM) by Oberauer (2023)
sdm(resp_error, version = "simple", ...) sdmSimple(resp_error, version = "simple", ...)
sdm(resp_error, version = "simple", ...) sdmSimple(resp_error, version = "simple", ...)
resp_error |
The name of the variable in the dataset containing the
response error. The response error should code the response relative to the
to-be-recalled target in radians. You can transform the response error in
degrees to radians using the |
version |
Character. The version of the model to use. Currently only "simple" is supported. |
... |
used internally for testing, ignore it |
see the online article for a detailed description of the model and how to use it. * Domain: Visual working memory
Task: Continuous reproduction
Name: Signal Discrimination Model (SDM) by Oberauer (2023)
Citation:
Oberauer, K. (2023). Measurement models for visual working memory - A factorial model comparison. Psychological Review, 130(3), 841-852
Version: simple
Requirements:
The response variable should be in radians and represent the angular error relative to the target
Parameters:
mu
: Location parameter of the SDM distribution (in radians; by default fixed internally to 0)
c
: Memory strength parameter of the SDM distribution
kappa
: Precision parameter of the SDM distribution
Fixed parameters:
mu
= 0
Default parameter links:
mu = tan_half; c = log; kappa = log
Default priors:
mu
:
main
: student_t(1, 0, 1)
kappa
:
main
: student_t(5, 1.75, 0.75)
effects
: normal(0, 1)
c
:
main
: student_t(5, 2, 0.75)
effects
: normal(0, 1)
An object of class bmmodel
# simulate data from the model dat <- data.frame(y = rsdm(n = 1000, c = 4, kappa = 3)) # specify formula ff <- bmf( c ~ 1, kappa ~ 1 ) # specify the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" )
# simulate data from the model dat <- data.frame(y = rsdm(n = 1000, c = 4, kappa = 3)) # specify formula ff <- bmf( c ~ 1, kappa ~ 1 ) # specify the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" )
Density, distribution function, and random generation for the
Signal Discrimination Model (SDM) Distribution with location mu
,
memory strength c
, and precision kappa
. Currently only a
single activation source is supported.
dsdm(x, mu = 0, c = 3, kappa = 3.5, log = FALSE, parametrization = "sqrtexp") psdm( q, mu = 0, c = 3, kappa = 3.5, lower.tail = TRUE, log.p = FALSE, lower.bound = -pi, parametrization = "sqrtexp" ) qsdm(p, mu = 0, c = 3, kappa = 3.5, parametrization = "sqrtexp") rsdm(n, mu = 0, c = 3, kappa = 3.5, parametrization = "sqrtexp")
dsdm(x, mu = 0, c = 3, kappa = 3.5, log = FALSE, parametrization = "sqrtexp") psdm( q, mu = 0, c = 3, kappa = 3.5, lower.tail = TRUE, log.p = FALSE, lower.bound = -pi, parametrization = "sqrtexp" ) qsdm(p, mu = 0, c = 3, kappa = 3.5, parametrization = "sqrtexp") rsdm(n, mu = 0, c = 3, kappa = 3.5, parametrization = "sqrtexp")
x |
Vector of quantiles |
mu |
Vector of location values in radians |
c |
Vector of memory strength values |
kappa |
Vector of precision values |
log |
Logical; if |
parametrization |
Character; either |
q |
Vector of quantiles |
lower.tail |
Logical; If |
log.p |
Logical; if |
lower.bound |
Numeric; Lower bound of integration for the cumulative distribution |
p |
Vector of probabilities |
n |
Number of observations to sample |
Parametrization
See the online article for details on the parameterization.
Oberauer (2023) introduced the SDM with the bessel parametrization. The
sqrtexp parametrization is the default in the bmm
package for
numerical stability and efficiency. The two parametrizations are related by
the functions c_bessel2sqrtexp()
and c_sqrtexp2bessel()
.
The cumulative distribution function
Since responses are on the circle, the cumulative distribution function
requires you to choose a lower bound of integration. The default is
, as for the brms::pvon_mises() function but you can choose any
value in the argument
lower_bound
of psdm
. Another useful
choice is the mean of the response distribution minus , e.g.
lower_bound = mu-pi
. This is the default in
circular::pvonmises()
, and it ensures that 50% of the cumulative
probability mass is below the mean of the response distribution.
dsdm
gives the density, psdm
gives the distribution
function, qsdm
gives the quantile function, rsdm
generates
random deviates, and .dsdm_integrate
is a helper function for
calculating the density of the SDM distribution.
Oberauer, K. (2023). Measurement models for visual working memory - A factorial model comparison. Psychological Review, 130(3), 841–852
# plot the density of the SDM distribution x <- seq(-pi, pi, length.out = 10000) plot(x, dsdm(x, 0, 2, 3), type = "l", xlim = c(-pi, pi), ylim = c(0, 1), xlab = "Angle error (radians)", ylab = "density", main = "SDM density" ) lines(x, dsdm(x, 0, 9, 1), col = "red") lines(x, dsdm(x, 0, 2, 8), col = "green") legend("topright", c( "c=2, kappa=3.0, mu=0", "c=9, kappa=1.0, mu=0", "c=2, kappa=8, mu=1" ), col = c("black", "red", "green"), lty = 1, cex = 0.8 ) # plot the cumulative distribution function of the SDM distribution p <- psdm(x, mu = 0, c = 3.1, kappa = 5) plot(x, p, type = "l") # generate random deviates from the SDM distribution and overlay the density r <- rsdm(10000, mu = 0, c = 3.1, kappa = 5) d <- dsdm(x, mu = 0, c = 3.1, kappa = 5) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
# plot the density of the SDM distribution x <- seq(-pi, pi, length.out = 10000) plot(x, dsdm(x, 0, 2, 3), type = "l", xlim = c(-pi, pi), ylim = c(0, 1), xlab = "Angle error (radians)", ylab = "density", main = "SDM density" ) lines(x, dsdm(x, 0, 9, 1), col = "red") lines(x, dsdm(x, 0, 2, 8), col = "green") legend("topright", c( "c=2, kappa=3.0, mu=0", "c=9, kappa=1.0, mu=0", "c=2, kappa=8, mu=1" ), col = c("black", "red", "green"), lty = 1, cex = 0.8 ) # plot the cumulative distribution function of the SDM distribution p <- psdm(x, mu = 0, c = 3.1, kappa = 5) plot(x, p, type = "l") # generate random deviates from the SDM distribution and overlay the density r <- rsdm(10000, mu = 0, c = 3.1, kappa = 5) d <- dsdm(x, mu = 0, c = 3.1, kappa = 5) hist(r, breaks = 60, freq = FALSE) lines(x, d, type = "l", col = "red")
softmax
returns the value of the softmax function
softmaxinv
returns the value of the inverse-softmax function
softmax(eta, lambda = 1) softmaxinv(p, lambda = 1)
softmax(eta, lambda = 1) softmaxinv(p, lambda = 1)
eta |
A numeric vector input |
lambda |
Tuning parameter (a single positive value) |
p |
A probability vector (i.e., numeric vector of non-negative values that sum to one) |
The softmax function is a bijective function that maps a real vector with length m-1
to a probability vector
with length m
with all non-zero probabilities. The present functions define the softmax function and its inverse, both with a tuning
parameter.
The current functions define the softmax as:
Code adapted from the utilities package
Value of the softmax function or its inverse
softmax(5:7) softmaxinv(softmax(5:7))
softmax(5:7) softmaxinv(softmax(5:7))
Given the model
, the data
and the formula
for the model,
this function will return the combined stan code generated by bmm
and
brms
## S3 method for class 'bmmformula' stancode(object, data, model, prior = NULL, ...)
## S3 method for class 'bmmformula' stancode(object, data, model, prior = NULL, ...)
object |
A |
data |
An object of class data.frame, containing data of all variables
used in the model. The names of the variables must match the variable names
passed to the |
model |
A description of the model to be fitted. This is a call to a
|
prior |
One or more |
... |
Further arguments passed to |
A character string containing the fully commented Stan code to fit a bmm model.
supported_models()
, brms::stancode()
scode1 <- stancode(bmf(c ~ 1, kappa ~ 1), data = oberauer_lin_2017, model = sdm(resp_error = "dev_rad") ) cat(scode1)
scode1 <- stancode(bmf(c ~ 1, kappa ~ 1), data = oberauer_lin_2017, model = sdm(resp_error = "dev_rad") ) cat(scode1)
bmm
modelsGiven the model
, the data
and the formula
for the model,
this function will return the combined stan data generated by bmm
and
brms
## S3 method for class 'bmmformula' standata(object, data, model, ...)
## S3 method for class 'bmmformula' standata(object, data, model, ...)
object |
A |
data |
An object of class data.frame, containing data of all variables
used in the model. The names of the variables must match the variable names
passed to the |
model |
A description of the model to be fitted. This is a call to a
|
... |
Further arguments passed to |
A named list of objects containing the required data to fit a bmm model with Stan.
supported_models()
, brms::standata()
sdata1 <- standata(bmf(c ~ 1, kappa ~ 1), data = oberauer_lin_2017, model = sdm(resp_error = "dev_rad") ) str(sdata1)
sdata1 <- standata(bmf(c ~ 1, kappa ~ 1), data = oberauer_lin_2017, model = sdm(resp_error = "dev_rad") ) str(sdata1)
bmmfit
objectCreate a summary of a fitted model represented by a bmmfit
object
## S3 method for class 'bmmfit' summary( object, priors = FALSE, prob = 0.95, robust = FALSE, mc_se = FALSE, ..., backend = "bmm" )
## S3 method for class 'bmmfit' summary( object, priors = FALSE, prob = 0.95, robust = FALSE, mc_se = FALSE, ..., backend = "bmm" )
object |
An object of class |
priors |
Logical; Indicating if priors should be included
in the summary. Default is |
prob |
A value between 0 and 1 indicating the desired probability to be covered by the uncertainty intervals. The default is 0.95. |
robust |
If |
mc_se |
Logical; Indicating if the uncertainty in |
... |
Other potential arguments |
backend |
Choose whether to display the bmm summary method (default), or to display the brms summary method. |
A list of class bmmsummary
containing the summary of the model's
parameters, the model formula, the model, and the data used to fit the model.
You can turn off the color output by setting the option options(bmm.color_summary = FALSE) or bmm_options(color_summary = FALSE)
# generate artificial data from the Signal Discrimination Model dat <- data.frame(y = rsdm(2000)) # define formula ff <- bmmformula(c ~ 1, kappa ~ 1) # fit the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" ) # summary of the model summary(fit)
# generate artificial data from the Signal Discrimination Model dat <- data.frame(y = rsdm(2000)) # define formula ff <- bmmformula(c ~ 1, kappa ~ 1) # fit the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" ) # summary of the model summary(fit)
bmm
Measurement models available in bmm
supported_models(print_call = TRUE)
supported_models(print_call = TRUE)
print_call |
Logical; If TRUE (default), the function will print information about how each model function should be called and its required arguments. If FALSE, the function will return a character vector with the names of the available models |
A character vector of measurement models available in bmm
supported_models()
supported_models()
Update an existing bmm mode. This function calls
brms::update.brmsfit()
, but it applies the necessary bmm postprocessing
to the model object before and after the update.
## S3 method for class 'bmmfit' update(object, formula., newdata = NULL, recompile = NULL, ...)
## S3 method for class 'bmmfit' update(object, formula., newdata = NULL, recompile = NULL, ...)
object |
An object of class |
formula. |
A |
newdata |
An optional data frame containing the variables in the model |
recompile |
Logical, indicating whether the Stan model should be recompiled. If NULL (the default), update tries to figure out internally, if recompilation is necessary. Setting it to FALSE will cause all Stan code changing arguments to be ignored. |
... |
Further arguments passed to |
When updating a brmsfit created with the cmdstanr backend in a different R session, a recompilation will be triggered because by default, cmdstanr writes the model executable to a temporary directory. To avoid that, set option "cmdstanr_write_stan_file_dir" to a nontemporary path of your choice before creating the original bmmfit.
For more information and examples, see brms::update.brmsfit()
An updated bmmfit
object refit to the new data and/or formula
# generate artificial data from the Signal Discrimination Model # generate artificial data from the Signal Discrimination Model dat <- data.frame(y = rsdm(2000)) # define formula ff <- bmf(c ~ 1, kappa ~ 1) # fit the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" ) # update the model fit <- update(fit, newdata = data.frame(y = rsdm(2000, kappa = 5)))
# generate artificial data from the Signal Discrimination Model # generate artificial data from the Signal Discrimination Model dat <- data.frame(y = rsdm(2000)) # define formula ff <- bmf(c ~ 1, kappa ~ 1) # fit the model fit <- bmm( formula = ff, data = dat, model = sdm(resp_error = "y"), cores = 4, backend = "cmdstanr" ) # update the model fit <- update(fit, newdata = data.frame(y = rsdm(2000, kappa = 5)))
On the circular space, angles can be only in the range (-pi;pi or -180;180). When subtracting angles, this can result in values outside of this range. For example, when calculating the difference between a value of 10 degrees minus 340 degrees, this results in a difference of 330 degrees. However, the true difference between these two values is -30 degrees. This function wraps such values, so that they occur in the circle
wrap(x, radians = TRUE)
wrap(x, radians = TRUE)
x |
A numeric vector, matrix or data.frame of angles to be wrapped. In radians (default) or degrees. |
radians |
Logical. Is x in radians (default=TRUE) or degrees (FALSE) |
An object of the same type as x
x <- runif(1000, -pi, pi) y <- runif(1000, -pi, pi) diff <- x - y hist(diff) wrapped_diff <- wrap(x - y) hist(wrapped_diff)
x <- runif(1000, -pi, pi) y <- runif(1000, -pi, pi) diff <- x - y hist(diff) wrapped_diff <- wrap(x - y) hist(wrapped_diff)
Raw data of 8 subjects for the response error in a continuous reproduction task with set size 1, 2, 3, and 6 reported by Zhang & Luck (2008).
zhang_luck_2008
zhang_luck_2008
zhang_luck_2008
A data frame with 4,000 rows and 9 columns:
Integer uniquely identifying different subjects
Trial identifyier
The set_size of the data in this row
The response error, that is the difference between the response given and the target color in radians.
Color value of the lure items coded relative to the target color.
https://www.nature.com/articles/nature06860